博物馆禁止使用闪光灯是为了保护文物

糖葫芦最后更新: 2016-11-12 07:28:14

逛博物馆时,如果留心观察,我们有时会发现馆内竖有禁止使用闪光灯的标识。出于保护藏品的目的,很多博物馆中都有禁止使用闪光灯的标识。可最近,发生在国家博物馆的一起“闪光灯事件。

真相

光除了能够直接导致纺织品和绘画中的染/颜料分解外,还会和氧气共同作用,发生光促进氧化,让文物“黯然失色”。闪光灯一次小小的闪烁,肯定不会像实验室中的模拟条件那样苛刻,但是日积月累的伤害却足以产生水滴石穿的效果。

谣言百科论证

问题的根源:光携带能量 万物生长靠太阳,因为阳光蕴含着能量。其实所有的光都是如此,也正是这些能量成为文物老化的罪魁祸首之一。其中最致命的可能是光化学反应:在这些能量的作用下,文物表面的分子或者分解,或者和其他物质反应,从而失去了原本的特征。

不过,在光的例子里,能量并不是平等的。光传递能量时并非连续的,而是分成一个个的小能量包,每个包对应一个“光子”。越蓝的光,每个光子的能量就越大,通常而言造成的光化学破坏也越大;而就算总能量相同,越红的光,造成的光化学破坏也较小。不严格地比喻说,这就像被普通网球分别砸一百下没有事,而被一个百倍质量的超级网球砸一下可能就要出事。

所以,关注光对文物的影响,需要注意两件事情:一是光携带的总能量大小,二是其中多少光子是高能的,多少是低能的。在讨论展出文物时,前者可以用“照度”来近似,而后者可以用“色温”来近似。

严格地说,衡量光的能量,应该用辐射功率。但是日常环境中我们接收光的最主要仪器就是我们的眼睛,最常用判断标准就是眼睛感受到的明亮程度,所以在讨论可见光的时候我们常常会使用“照度”——把光强折合为人眼感受到的亮度。

类似地,衡量光子能量分布,严格说应该用光谱信息。但博物馆和摄影一般不会使用什么奇怪的光源,而普通光源很多都可以用理想的黑体来近似。所以这里我们用黑体的对应温度——“色温”来近似描述光子的能量状况:每种情况下的光源都会发出能量大小不一的各种光子,但是色温越高,高能光子越多,光化学破坏力也越大。

在纯粹的黑暗中保管文物当然最理想,但这样就失去了文物的教育和审美意义。好的博物馆会严格控制馆内光源,既能让参观者肉眼看到重要细节,又能尽可能延长文物的寿命;但再好的控制,面对外来的闪光灯也会化为泡影。那么,拍照时的闪光灯会发出怎样的光?是否超过了展品的耐受能力呢?

闪光灯的光,和展品的耐受力 以最常用的氙气闪光灯为例,为了更详细地了解它的发光性质,我们结合氙气闪光灯的发射光谱加以讨论。图中可以看出,除可见光区(400 nm - 700 nm)外,氙气闪光灯还有两个明显的发射区,分别在波长更短、能量更高的紫外光区(200 nm - 400 nm),和比红色光波长更长,具有明显热效应的红外区(700 nm – 1200 nm)。

那么氙气闪光灯是否符合要求呢?首先看色温。作为阳光的绝佳替代品,氙灯的色温与其相近,一般在6200K左右,这已经超过了对光有一定敏感度的藏品的要求了。作为闪光灯的氙灯发光时间虽然很短,但在距离物品2米处时,其瞬时照度可以达到上万勒克斯[2]——这显然远远大于藏品所能承受照度值。

纺织品为何如此容易“见光死”? 多彩的织物依赖于各种染料。正所谓“成也萧何,败也萧何”,染料本身的脆弱,也使彩色织物更加难以保存。

造成染料如此“娇弱”的原因很多,“光漂白”便是罪魁祸首之一。顾名思义,染料的光漂白就是指染料在光照作用下发生褪色。这其中的机理较为复杂,但多数研究表明,染料光漂白可以分为染料的直接分解和氧化分解两种途径。[4,5]直接分解一般需要能量较高的紫外光,发生条件稍显苛刻;而氧化分解途径,或者说光促进氧化途径,因为对光的要求不高,再加上无处不在的氧气在其中“为虎作伥”,在平常条件下就很容易发生。

根据被光活化后,染料分子如何与氧气反应,光促进氧化途径又可以分为两种。

第一种途径是光通过染料活化氧气,被活化的氧气再反过来把染料破坏掉。为了更好地了解这两种途径,我们需要先引入一个概念——能级。为了简单理解,我们可以把能级看成是不同高度的楼层。俗话说,水往低处流。分子其实也都喜欢在稳定的最底层呆着。可是,一旦有了光照,染料分子会吸收合适的光能,纷纷蹦上更高层。而另一方面,平时沐浴在氧气中的我们欢蹦乱跳的,可能会觉得氧气很温和。其实,这是因为氧气一般都是三线态氧——处于底层状态的氧气。通常情况下,光照很难让氧气“嗨”起来,而吸收看光能,蹦上高层的染料分子,恰好扮演了能量传递者的身份——它们慷慨的将光能送给氧气,自己则退回到底层。而获得能量的氧气一步登天,摇身一变成了能量更高的单线态氧,露出了杀手的本来面目。这单线态氧简直是白眼狼,回过头来就把染料氧化得干干净净。[6]

另一种光促进氧化途径则来得更加直接。前面我们说到,分子可以登上不同的楼层。其实更微观的来看,分子内部也是有着不同的楼层,而房客则是一个个的电子。电子本来都规规矩矩的从低层到高层住着自己的房间,光一来,情况就不同了,电子在吸收光能后,会跳到更高的楼层。如果这个不安分的电子再跳回原来的房间,并把吸收的能量以其他方式释放出去,比如光,那么一切安好;但是,氧气的出现使得不安分的高层电子有了新的去处——被光照活化的染料分子会将电子移交给氧气,自身则被氧化为自由基正离子,而氧气则被还原为自由基超氧阴离子。自由基超氧阴离子可以说是结合了自由基的活泼和氧的强氧化性,是个瞪谁谁怀孕的恶魔。在这个恶魔面前,染料分子丢盔弃甲,被分解殆尽。[7]

尽管古代没有那么丰富的人工合成染料,人们还是从大自然获得了种类繁多的天然染料,比如靛蓝(吲哚类)、花青素(类黄酮类)、紫草素(醌类)、小襞碱(生物碱类)等,其中的靛蓝染料有着非常悠久的使用历史。古代的靛蓝染色依靠的是从植物如蓝草中提取的汁液。在染色过程中,除了会生成靛蓝以外,还常常因染色时温度、pH值的变化,产生靛玉红——一种与靛蓝结构相近的分子。而有研究发现,主波长为365 nm的紫外灯对染料中的靛玉红有明显的降解作用[8]。

另外,靛蓝染料中的靛蓝胭脂红(只比靛蓝多了磺酸根,除了增加水溶性以外,基本结构和性质和靛蓝差不多)在紫外灯和氧气的作用下,也会很快发生氧化分解,生成靛红磺酸。[9]

光,让绘画“黯然失色” 织物常用各种有机染料来增添色彩,而另一个彩色世界——绘画,还会使用各种无机颜料,比如铅白,朱砂等等。那么,使用无机颜料的藏品,如油画,是否能逃过闪光灯的追杀呢?

遗憾的是,不能。举例来说,亮黄色的绘画颜料中会使用一种叫做硫化镉(CdS)的成分,这种成分因其着色力强、稳定性以及颜色鲜亮,而广受画家们的欢迎。莫奈、梵高、毕加索[11-13]等绘画大家的作品中都大量使用了这种颜料。但是在可见光的作用下,硫化镉中的硫会被逐步氧化成硫酸根。[13]这个过程还是可以用之前提到的能级模型来解释:光照会住在硫化镉中的电子房客赶到更高的楼层中,而一旦有空出来的房间,原本住在硫中的房客就会趁虚而入。结果就是硫失去电子,被氧化为单质硫,而单质硫很容易被氧气氧化为硫酸根,最终使颜料被完全破坏。

粉末。

管中窥豹,可见一斑。上面看的这些例子,也只是为大家展示了光照对藏品破坏这只花豹身上的一块花斑。而光照对藏品的破坏又何止这一种——红外光虽然能量较低,但是其显著的热效应可以加速纸张、木器等纤维素丰富的藏品脱水开裂;而有机藏品,比如动植物标本、骨器等中富含的羰基、芳基等发色团,同样可以在光照的条件下被激发,发生氧化,或干脆直接被分解[15,16]。

闪光灯一次小小的闪烁,肯定不会像实验室中的模拟条件那样苛刻,但是日积月累的伤害却足以产生水滴石穿的效果。为了历史的厚重可以千百年的传承下去,请关闭闪光灯,小心翼翼地欣赏那些珍贵的藏品吧!

参考资料 http://dpanswers.com/content/canon_flash.php http://www.cap-xx.com/resources/docs/cap-xx_wp_0906_comparison_of_xenon_flash_and_led_flash_v3.pdf 《博物馆建筑设计规范 JGJ66-91》 Batchelor, S. N., et al. The photofading mechanism of commercial reactive dyes on cotton, Dyes and Pigments, 2003, 59, 269. Oakes, J. Photofading of textile dyes, Review of Progress in Coloration and Related Topics, 2001, 31, 21. Wilkinson, F., et al. Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation, Journal of Physical and Chemical Reference Data, 1995, 24, 663. Egerton, G. S., et al. The photochemistry of dyes. IV-The role of singlet oxygen and hydrogen peroxide in photosensitised degradation of polymers, Journal of the Society of Dyers and Colourists, 1971, 87, 268. 何秋菊,一组古代丝织品上蓝色植物染料的分析鉴定,文物保护与考古科学,2012,24,59. Camarero, L., et al. Photo-Assisted oxidation of indigocarmine in an acid medium, Environmental Engineering Science, 2003, 20, 281. Bandara, J., et al. Fast kinetic spectroscopy, decoloration and production of H2O2 induced by visible light in oxygenated solutions of the azo dye Orange II, New Journal of Chemistry, 1999, 23, 717. Roy, A. National Gallery Technical Bulletin, 2007, 28, 58. Fiedler, I., et al. Cadmium yellows, oranges and reds. Artists’Pigments. A Handbook of their History and Characteristics; Cambridge University Press: Cambridge, 1986; Vol. 1, pp 65. Leone, B., et al. The deterioration of cadmium sulphide yellow artists’pigments. In Preprints of The 14th Triennial Meeting of ICOM International Committee for Conservation; 2005; Vol. 2, pp 803. Van der Snickt, G., et al. Characterization of a Degraded Cadmium Yellow (CdS) Pigment in an Oil Painting by Means of Synchrotron Radiation Based X-ray Techniques, Analytical Chemistry, 2009, 81, 2600. Bent, D. V., et al. Excited State Chemistry of Aromatic Amino Acids and Related Peptides. 111. Tryptophan, Journal of the American Chemical Society, 1975, 97, 2612. Dorfman, L. M., et al. The Mechanism of the Photo-Chemical Decomposition of Diethyl Ketone, The Journal of Chemical Physics, 1949, 17, 511. 内容来源:为什么博物馆禁止使用闪光灯?winter_鼠包,果壳网科学人主题站